Derivatives of inverse trigonometric function

Calculus Tutorial

Derivatives of inverse trigonometric function

Intro

the formula for the derivative of arctan(x)=1/(1+x2).

Sample Problem

y=arctan(x/3)
evaluate dy/dx at x=1

Solution

y=arctan(x/3)
dy/dx=d/dx(arctan(x/3) — differentiate
=1/(1+(x/3)2).1/3 — chain rule
=9/(9+x2).1/3 — simlify
=3/(9+x2)
=3/(9+1) — substitute x=1
=3/10



About The Author

Mathematics Teacher
I was a teacher in Srilanka from 1992 to 2006. I took tuition from 1990 to 1991 in India. I do general work in Canada but I help to do homework to my daughters. I finished my teacher\'s training college diploma in Srilanka. I completed my B.Sc degree course at Bharayiar university in India.
13 Subjects
KnowRo Tutor
28 Tutorials
Montréal, QC
Get Tutoring Info

Suggested Tutors for Calculus Help

Abdul B

Arlington, VA

Math And Science Expert

Siddarth C

Vienna, VA

All Subjects

Emily V

Alexandria, VA

Versatile And Flexible Tutor

Maxine J

Bethesda, MD

Any Topic, Any Language

^